Find the value of tan1∘tan2∘tan3∘.......tan89∘.
Find the value of the given expression.
Given: tan1∘tan2∘tan3∘.......tan89∘.
By solving the given expression we get,
tan1∘tan2∘tan3∘.......tan89∘=tan1∘tan89∘tan2∘tan88∘......tan44∘tan46∘tan45∘=tan1∘tan90∘-1∘tan2∘tan90∘-2∘.......tan44∘tan90∘-44∘tan45∘=tan1∘cot1∘tan2∘cot2∘.......tan44∘cot44∘tan45∘[∵tan(90∘-θ)=cotθ]=tan1∘×1tan1∘tan2∘×1×tan2∘.......tan44∘×1tan44∘×1[∵cot=1tanθandtan45∘=1]=1×1..........×1=1
Hence, the value of tan1∘tan2∘tan3∘.......tan89∘is 1.