Given, sin−1x+sin−12x=π3
⇒sin−12x=π3−sin−1x
⇒2x=sin(π3−sin−1x)
⇒2x=sinπ3cos(sin−1x)−cosπ3sin(sin−1x)
⇒2x=√32cos(cos−1√1−x2)−x2
⇒2x+x2=√32cos(cos−1√1−x2)
⇒4x+x2=√32cos(cos−1√1−x2)
⇒5x2=√32cos(cos−1√1−x2)
⇒5x=√3√1−x2
squaring both sides, we get
⇒25x2=3(1−x2)
⇒25x2=3−3x2
⇒28x2=3
⇒x2=328
∴x=±√328