We have, 7+√57−√5−7−√57+√5=a+711√5b
⇒(7+√5)2−(7−√5)2(7−√5)(7+√5)=a+711√5b
⇒[72+(√5)2+2×7×√5]−(72+(√5)2−2×7×√5]72−(√5)2=a+711√5b
⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩Using identity,(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2and(a−b)(a+b)=a2−b2⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭
⇒49+5+14√5−49−5+14√549−5=a+711√5b⇒28√544=a+711√5b⇒0+711√5=a+711√5b
On comparing both sides, we get
a = 0 and b = 1