Find the values of K for which the line (K−3)x−(4−K2)y+K2−7K+6=0 is
(a) Parallel to the x-axis
(b) Parallel to the y-axis,
(c) Passing through the origin.
The given equation of line is
(K−3)x−(4−K2)y+K2−7K+6=0
Then m=−(K−3)−(4−K2)=K−34−K2
(a) If the line is parallel to x-axis then m = 0
∴ K−34−K2=0⇒K−3=0
⇒K=3
(b) If the line is parallel to y-axis then 1m=0
∴ 4−K2K−3=0⇒4−K2=0
⇒ K2=4 ⇒K=±2
(c) If the line passes through origin then
(K−3)×0−(4−K2)×0+K2−K+6=0
⇒ K2−7K+6=0
⇒(K−1)(K−6)=0⇒K=1,6