Consider the given series in A.P.
25+22+19+............+x=115
Then,
a=25
d=22−25=−3
Sn=115
n=?
We know that,
an=a+(n−1)d
x=25+(n−1)×(−3)
x=25−3n+3
x=28−3n...........(1)
Sn=n2(2a+(n−1)d)
⇒115=n2(2×25+(n−1)(−3))
⇒230=n(50−3n+3)
⇒230=53n−3n2
⇒3n2−53n+230=0
⇒3n2−(30+23)n+230=0
⇒3n2−30n−23n+230=0
⇒3n(n−10)−23(n−10)=0
⇒(n−10)(3n−23)=0
If
n−10=0
n=10
3n−23=0
n=233
n=10 is acceptable
Put in the equation (1) and we get,
x=28−3n
x=28−3×10
x=−2
Hence, this is the answer.