The correct option is
B tanx2tanx1>x2x1Consider a function f(x)=tanxx
f′(x)=xsec2x−tanxx2
=sec2xx−sinxcosxx2
=x−sinxcosxx2cos2x
=x−2sinxcosx2x2cos2x
=x−sin2x2x2cos2x
=2x−sin2x2x2cos2x
Given:0<x<π2
or 0<2x<π
⇒2x>sin2x
⇒f′(x)>0
⇒f(x) is an increasing function for all
x∈(0,π2)
If x1<x2⇒f(x1)<f(x2)
⇒tanx1x1<tanx2x2
or x2x1<tanx2tanx1
or tanx2tanx1>x2x1