For any two sets A and B, prove that :
A' - B' = B- A
To show A' - B' = B- A
We show that A′−B′⊆B−A and vice versa
Let x ϵ A′−B′
⇒x ϵ A′ and x /ϵ B′
⇒x ϵ A and x ϵ B
[∵A∪A′=ϕ and B∩B′=ϕ]
⇒x ϵ B−A
This is true for all x ϵA′−B′
Hence A′−B′⊆B−A
Conversely,
Let, x ϵB−A
⇒x ϵ B andZ x /ϵ A
⇒x /ϵB′ and x ϵ A′
[∵B∩B′=ϕ and A∩ A′=ϕ]
⇒x ϵ A′ and x /ϵ B′
⇒x ϵ A′−B′
This is true for all x ϵ B−A
Hence B−A⊆A′−B′
∴A′−B′=B−AProved.