For any two sets A and B, prove the following :
(i) A∩(A′∪B)=A∩B
(ii) A - (A - B) = A∩B.
(iii) A∩(A∪B)′=ϕ
(iv) A - B =AΔ(A∪B).
For any two sets A and B, prove that
(i) (A∪B)−B=A−B
(ii) A−(A∩B)=A−B
(iii) A−(A−B)=A∩B
(iv) A∪(B−A)=A∪B
(v) (A−B)∪(A∩B)=A
(i) B⊂A∪B
(ii) A∩B⊂A
(iii) A⊂B⇒A∩B=A