The correct option is A Number of real value of x=4
(x2−5x+5)x2+4x−60=1⟶(1)⇒log(x2−5x+5)x2+4x−60=log1(takinglogonbothside)⇒(x2+4x−60)log(x2−5x+5)=0(sincelog1=0)so,(x2+4x−60)=0(0r)log(x2−5x+5)=0for,(x2+4x−60)=0⇒b2−4ac=42−4.1.(−60)=256>0∴xhas2distinctrealrootsalsofor,log(x2−5x+5)=0⇒log(x2−5x+5)=log1(sincelog1=0)⇒(x2−5x+5)=0⇒b2−4ac=(−5)2−4.1.4=9>0∴xhas2distinctrealroots∴forequation(1),numberofrealvaluesofx=4