The correct option is B 1
For the equation (a2−3a+2)x2+(a2−4)x+a2−a−2=0 to be an identity in x, the co-efficients of x2 , x and the constant term must be identically zero.
⇒a2−3a+2=(a−1)(a−2)=0
∴a=1 or a=2
⇒a2−4=(a−2)(a+2)=0
∴a=2 or a=−2
⇒a2−a−2=(a+1)(a−2)=0
∴a=−1 or a=2
∴ For a=2 all three coefficients becomes zero.
Hence, option A.