The correct options are
A S(0)=2nCn
C S(2)=n2[12(2nCn)−2n−2Cn−2]
D S(1)=12n(2nCn)
S(0)=∑nr=0(nCr)2=∑nr=0(nCr)(∑nr=0(nCn−r)
= number of ways of selecting n persons out of n men and n women
=2nCn
S(1)=∑nr=0r(nCr)2=∑nr=0r(nCn−r)2=∑nr=0(n−r)(nCr)2=n(2nCn)−S(1)
⇒S(1)=n2(2nCn)
S(2)=∑nr=0r(nCr)2=∑nr=0r[n−(n−r)](nCr)2
=n∑nr=0r(nCr)2−∑nr=0r(nCr)2((n−r)nCn−r)
But
∑nr=0(rnCr)((n−r)nCn−r)
= the number of ways of selecting n persons from n men and n women and appointing a men's leader and a women's leader
=n2(2n−2Cn−2)
Thus,
S(2)=n22(2nCn)−n2(2n−2Cn−2)