Let, y=cos( acosx+bsinx )
Differentiate both sides with respect to x,
dy dx = d dx { cos( acosx+bsinx ) } =−sin( acosx+bsinx )× d dx ( acosx+bsinx ) =−sin( acosx+bsinx )[ a( −sinx )+bcosx ] =( asinx−bsinx )⋅sin( acosx+bsinx )
Thus, the derivative of the given function is ( asinx−bsinx )⋅sin( acosx+bsinx ).
, for some constant a and b.