wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For triangle ABC, show that. SIN A+B/2=COS C/2

Open in App
Solution

In a ΔABC, ∠A + ∠B + ∠C = 180° [Angle sum property]

⇒ ∠A + ∠B = 180° - ∠C

⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2

⇒ (∠A + ∠B) / 2 = (180° - ∠C) / 2

⇒ (∠A + ∠B) / 2 = (90° - ∠C/ 2)

⇒ sin (∠A + ∠B) / 2 = sin (90° - ∠C/ 2)

⇒ sin (∠A + ∠B) / 2 = cos ∠C/ 2. [sin (90 - θ) = cos θ)]

Therefore, sin (∠A + ∠B) / 2 in terms of angle c is cos ∠C/ 2.

flag
Suggest Corrections
thumbs-up
34
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon