The correct option is C 1
Need to find:–––––––––––––––– Value of a which satisfies the exponential equation 3−3a=127
3−3a=127
Applying a−n=1an:
⇒133a=133 [∵27=3×3×3=33]
⇒133a×33=133×33
[Multiplying 33 both sides]
⇒3333a=1
⇒33−3a=30
(∵aman=am−n and p0=1 for all p≠0)
In the above exponential equation, the base (3) is same. Hence, for L.H.S=R.H.S, the powers must be same.
⇒3−3a=0
⇒3−3a+3a=0+3a
⇒3=3a
⇒3a=3
⇒3a3=33
⇒a=1––––––
∴ The value of a which satisfies the exponential equation 3−3a=127 is 1–.
Hence, option (c.) is the correct choice.