Four pointsA(6,3),B(−3,5),C(4,−2)and D(x,3x)are given in such a way thatΔ DBCΔ ABC=12,find x.
A(6,3),B(−3,5),C(4,−2)and D(x,3x)or (ΔABC)=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=12[−3(−2−3x)+4(3x−5)+x(5+x)]=12[6+9x+12x−20+5x+2x]=12[28x−14]=7[2x−1]or(ΔABC)=12[6(5+2)−3(−2−3)+4(3−5)]=12[42+15−8]=492or(ΔABC)or(ΔABC)=127(2x−1)49=12 ⇒14(2x−1)49=12 ⇒(28x−14)49=1256x−28=49 ⇒56x=28+49 ⇒56x=77x=118