11.3+21.3.5+31.3.5.7+41.3.5.7.9+⋯T1=11.3=12[3−11.3]=12[1−13]=12−12.3T2=21.3.5=5−33.5=13−15T3=33.5.7=12[7−55.7]=12[15−17]⋮Tn=12[12n−1−12n+1]So,S=12n∑r=112r−1−12r+1=12[11−13]−12[11−13]12n−1−12n+1S=12[1−12n+1]=2n2(2n+1)=nn+1Therefore,S=12[1−11.3.5...(2n+1)]