11.4+14.7+17.10+.....+1(3n−2)(3n+1)=n3n+1
Let P(n) : 11.4+14.7+17.10+.....+1(3n−2)(3n+1)=n3n+1
Put n = 1
P(1) : 11.4=14
14=14
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
11.4+14.7+17.10+......+1(3k−2)(3k+1)=k3k+1 ........(1)
We have to show that,
11.4+14.7+17.10+....+1(3k−2)(3k+1)+1(3k+1)(3k+4)=(k+1)(3k+4)
Now,
{11.4+14.7+17.10+......+1(3k−2)(3k+1)}+1(3k+1)(3k+4)
=k(3k+1)+1(3k+1)(3k+4)
=1(3k+1)[k1+1(3k+4)]
=1(3k+1)[k(3k+4)+13k+4]
=1(3k+1)[3k2+4k+1(3k+4)]
=1(3k+1)[3k2+4k+13k+4]
=1(3k+1)[3k2+3k+k+13k+4]
=[3k(k+1)+(k+1)(3k+1)(3k+4)]
=(k+1)(3k+1)(3k+1)(3k+4)
=(k+1)(3k+4)
⇒ P(n) is true for n = k + 1
⇒ P(n) is true all n ϵ N by PMI.