Prove that 1secA+tanA=secA−tanA
Given LHS = 1secA−tanA On rationalizing we get, = 1secA−tanA×secA+tanAsecA+tanA =secA+tanA(secA−tanA)(secA+tanA) =secA+tanAsec2A−tan2A =secA+tanA1 =secA+tanA
LHS = RHS.
1+tanA*tanA/1+cotA*cotA=1-tanA/1-cotA
Prove it
(sec A+tan A−1)(sec A−tan A+1)tan A=