1−sinAcosAcosA(secA−cosecA).sin2A−cos2Asin3A+cos3A=sinA
LHS=1−sinAcosAcosA(secA−cosecA).sin2A−cos2Asin3A+cos3A
=1−sinAcosAcosA(1cosA−1sinA).(sinA+cosA)(sinA−cosA)(sinA+cosA)(sin2A+cos2A−sinAcosA)
[Using a2−b2=(a−b)(a+b)and a3+b3−(a+b)(a2+b2−ab)]
=(1−sinAcosA)cosA(sinA−cosAcosAsinA).(sinA−cosA)(1−sinAcosA){sin2A+cos2A=1}
=cosAsinAcosA=sinA=RHS
Hence proved.