wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx+y2+y+1x2+x+1=0 prove that (x+y+1)=A(1xy2xy) where A is parameter.

Open in App
Solution

dydx+y2+y+1x2+x+1=0
dydx=y2+y+1x2+x+1
dyy2+y+1=dxx2+x+1
dyy2+2×12×y+(12)2(12)2+1=dxx2+2×12×x+(12)2(12)2+1
dy(y+12)2+(32)2=dx(x+12)2+(32)2
dy(y+12)2+(32)2dy=dx(x+12)2+(32)2
23tan1⎜ ⎜ ⎜ ⎜y+1232⎟ ⎟ ⎟ ⎟=23tan1⎜ ⎜ ⎜ ⎜x+1232⎟ ⎟ ⎟ ⎟+c
23tan1⎜ ⎜ ⎜ ⎜y+1232⎟ ⎟ ⎟ ⎟+23tan1⎜ ⎜ ⎜ ⎜x+1232⎟ ⎟ ⎟ ⎟=c
23⎜ ⎜ ⎜ ⎜tan1⎜ ⎜ ⎜ ⎜y+1232⎟ ⎟ ⎟ ⎟+tan1⎜ ⎜ ⎜ ⎜x+1232⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟=c
23tan1⎢ ⎢ ⎢ ⎢2y+13+2x+1312y+13×2x+13⎥ ⎥ ⎥ ⎥=c
2y+13+2x+1312y+13×2x+13=tan(3c2)
2y+13+2x+1312y+13×2x+13=c1 where c1=tan(3c2)
2x+2y+23=c1(1(2y+1)(2x+1)3)
23(x+y+1)=c1(34xy2x2y1)
23(x+y+1)=c1(24xy2x2y)
23(x+y+1)=2c1(12xyxy)
3(x+y+1)=c1(12xyxy) is the required general solution.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon