dydx+y2+y+1x2+x+1=0
dydx=−y2+y+1x2+x+1
dyy2+y+1=−dxx2+x+1
dyy2+2×12×y+(12)2−(12)2+1=−dxx2+2×12×x+(12)2−(12)2+1
dy(y+12)2+(√32)2=−dx(x+12)2+(√32)2
∫dy(y+12)2+(√32)2dy=−∫dx(x+12)2+(√32)2
2√3tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠=−2√3tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠+c
2√3tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠+2√3tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠=c
2√3⎛⎜
⎜
⎜
⎜⎝tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠+tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠⎞⎟
⎟
⎟
⎟⎠=c
2√3tan−1⎡⎢
⎢
⎢
⎢⎣2y+1√3+2x+1√31−2y+1√3×2x+1√3⎤⎥
⎥
⎥
⎥⎦=c
2y+1√3+2x+1√31−2y+1√3×2x+1√3=tan(√3c2)
2y+1√3+2x+1√31−2y+1√3×2x+1√3=c1 where c1=tan(√3c2)
2x+2y+2√3=c1(1−(2y+1)(2x+1)3)
2√3(x+y+1)=c1(3−4xy−2x−2y−1)
2√3(x+y+1)=c1(2−4xy−2x−2y)
2√3(x+y+1)=2c1(1−2xy−x−y)
√3(x+y+1)=c1(1−2xy−x−y) is the required general solution.