dydx=−y2+y+1x2+x+1
⇒dyy2+y+1=−dxx2+x+1
On integrating, we get
∫dyy2+y+1=−∫dxx2+x+1
∫dyy2+2×12y+14−14+1=−∫dxx2+2×12x+14−14+1
∫dy(y+12)2+34=−∫dx(x+12)2+34
∫dy(y+12)2+(√32)2=−∫dx(x+12)2+(√32)2
2√3tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠=−2√3tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠+k
or 2√3tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠+2√3tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠=k
or tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠+tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠=√32k
or tan−1⎛⎜
⎜
⎜
⎜⎝y+12√32⎞⎟
⎟
⎟
⎟⎠+tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠=c where c=√32k
or tan−1(2y+1√3)+tan−1(2x+1√3)=c where c=√32k