secA−tanAsecA+tanA=1−2secAtanA+2tan2A
(secA−tanA)(secA+tanA)=1–2secAtanA+2tan2A
LHS
Multiply above and below by (secA-tanA)
=(secA−tanA)2(sec2A−tan2A)
=(sec2A−2secAtanA+tan2A)
=1+tan2A−2secAtanA+tan2A
=1–2secAtanA+2tan2A , proved
Find the value of tan A + 2 tan2A + 4 tan4A + 8 cot 8A