The correct option is B ln|tan−1(secx+cosx)|+c
Put tan−1(secx+cosx)=f(x)
⇒f′(x)=ddx(tan−1(secx+cosx))
=11+(secx+cosx)2×ddx(secx+cosx)
=11+(1cosx+cosx)2×(secxtanx−sinx)
=11+cos2x+1cos2x+2×(1cosx×sinxcosx−sinx)
=1cos4x+3cosx+1cos2x×(sinxcos2x−sinx)
=1cos4x+3cosx+1cos2x×(sinx−sinxcos2xcos2x)
=1cos4x+3cosx+1×sinx(1−cos2x)
=1cos4x+3cosx+1×(sin3x)
⇒f′(x)=sin3xcos4x+3cos2x+1∴∫f′(x)dxf(x)=ln|f(x)|+c
Thus the integral is ln|tan−1(secx+cosx)|+c