wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin3x(cos4x+3cos2x+1)tan1(secx+cosx)dx=

A
tan1(secx+cosx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln|tan1(secx+cosx)|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1(secx+cos2x)2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln|secx+cosx|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B ln|tan1(secx+cosx)|+c
Put tan1(secx+cosx)=f(x)
f(x)=ddx(tan1(secx+cosx))
=11+(secx+cosx)2×ddx(secx+cosx)
=11+(1cosx+cosx)2×(secxtanxsinx)
=11+cos2x+1cos2x+2×(1cosx×sinxcosxsinx)

=1cos4x+3cosx+1cos2x×(sinxcos2xsinx)

=1cos4x+3cosx+1cos2x×(sinxsinxcos2xcos2x)
=1cos4x+3cosx+1×sinx(1cos2x)
=1cos4x+3cosx+1×(sin3x)


f(x)=sin3xcos4x+3cos2x+1f(x)dxf(x)=ln|f(x)|+c

Thus the integral is ln|tan1(secx+cosx)|+c

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon