wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin5Acos2Asin6AcosAsinAsin2Acos2Acos3A

Open in App
Solution

sin5Acos2Asin6AcosAsinAsin2Acos2Acos3A

multiplying and dividing by 2

2sin5Acos2A2sin6AcosA2sinAsin2A2cos2Acos3A

using
2sinAcosB=sin(A+B)+sin(AB)
2sinAsinB=cos(AB)cos(A+B)
2cosAcosB=cos(A+B)+cos(AB)

[sin(5A+2A)+sin(5A2A)][sin(6A+A)+sin(6AA)][cos(A2A)cos(A+2A)][cos(2A+3A)+cos(2A3A)]

=sin7A+sin3Asin7Asin5AcosAcos3Acos5AcosA

=sin3Asin5Acos3Acos5A=sin3Asin5A[cos3A+cos5A]

using
sinAsinB=2sin(AB2)cos(A+B2)
cosC+cosD=2cos(C+D2)cos(CD2)

So, sin3Asin5A[cos3A+cos5A]
=2sin(3A5A2)cos(3A+5A2)2cos(3A+5A2)cos(3A5A2)
=2sinAcos4A2cos4AcosA [sin(x)=sinx and cos(x)=cosx]
=tanA

1118931_1201048_ans_70bf2726d21e4ea9a429a75c00d724c8.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon