sin5Acos2A−sin6AcosAsinAsin2A−cos2Acos3A
multiplying and dividing by 2
2sin5Acos2A−2sin6AcosA2sinAsin2A−2cos2Acos3A
using
2sinAcosB=sin(A+B)+sin(A−B)
2sinAsinB=cos(A−B)−cos(A+B)
2cosAcosB=cos(A+B)+cos(A−B)
[sin(5A+2A)+sin(5A−2A)]−[sin(6A+A)+sin(6A−A)][cos(A−2A)−cos(A+2A)]−[cos(2A+3A)+cos(2A−3A)]
=sin7A+sin3A−sin7A−sin5AcosA−cos3A−cos5A−cosA
=sin3A−sin5A−cos3A−cos5A=sin3A−sin5A−[cos3A+cos5A]
using
sinA−sinB=2sin(A−B2)cos(A+B2)
cosC+cosD=2cos(C+D2)cos(C−D2)
So, sin3A−sin5A−[cos3A+cos5A]
=2sin(3A−5A2)cos(3A+5A2)−2cos(3A+5A2)cos(3A−5A2)
=−2sinAcos4A2cos4AcosA [∵sin(−x)=−sinx and cos(−x)=cosx]
=tanA