In ΔABC, ∠CAB+∠ABC+∠BCA=180∘ [angle sum property of a triangle]
⇒25∘+35∘+∠BCA=180∘⇒∠BCA=180∘−60∘⇒∠BCA=120∘
Also, ∠BCA is an exterior angle
∴∠BCA=∠D+y
⇒y=∠BCA−∠D=120∘−60∘ [∵∠D=60∘, given]
⇒y=60∘
Now, ∠x and ∠y form a linear pair
∴x+y=180∘⇒x+60∘=180∘⇒x=180∘−60∘=120∘