Let BC be the building and AD be the tower.
Let the height of tower, AD be hm.
Angles of depression of the top D and the bottom A of the tower CB are 30∘ and 60∘ respectively.
∴ ∠CDE=30∘
∠CAB=60∘
Since, BC = 60 m.
∴ CE = (60 - h)m
Let AB = DE = xm
In ΔDEC,
tan 30∘=CEDE
⇒1√3=60−hx
⇒x=√3(60−h) ⋯(1)
In ΔCBA,
tan 60∘=BCAB
⇒√3=60x
⇒x=60√3 ⋯(2)
Equating equation (1) and (2),
60√3=√3(60−h)
⇒3(60−h)=60
⇒180−3h=60
⇒180−60=3n
⇒120=3h
⇒h=1203
⇒h=40
Thus, the height of the tower is 40m.