Given 15cotA=8, find sinA and cosA
Given: 15cotA=8
⇒cotA=815
⇒cot2A=64225
⇒cosec2A−1=64225, [Sincecot2A=cosec2A−1]
⇒cosec2A=1+64225
⇒cosec2A=225+64225
⇒cosec2A=289225
⇒cosecA=1715
⇒sinA=1517, ---(1) [Since, cosecA=1sinA]
⇒sin2A=225289,
⇒1−cos2A=225289, [Since, sin2A=1−cos2A]
⇒cos2A=1−225289
⇒cos2A=289−225289
⇒cos2A=64289
⇒cosA=817-------(2)