A=⎡⎢⎣111241231⎤⎥⎦,B=[2334],P=[kmnp−qr]Now BPA=[101010]⇒[2334][kmnp−qr]⎡⎢⎣111241231⎤⎥⎦=[101010]
⇒[2k+3p2m−3q2n+3r3k+4p3m−4q3n+4r]⎡⎢⎣111241231⎤⎥⎦=[101010]
⇒2k+3p+4m−6q+4n+6r=1 ...(1)
and 2k+3p+8m−12q+6n+9r=0 ...(2)
and 2k+3p+2m−3q+2n+3r=1 ...(3)
and 3k+4p+6m−8q+6n+8r=0 ...(4)
and 3k+4p+12m−12q+9n+12r=1 ...(5)
and 3k+4p+3m−4q+3n+4r=0 ...(6)
Solving (1),(2),(3),(4),(5) and (6), we get
k+m+n+p+q+r=1