Given : U(x)=3f(x)+4g(x)+10h(x)
Squaring both sides we get
U2(x)=9f2(x)+16g2(x)+100h2(x)+24f(x)g(x)+80g(x)h(x)+60f(x)h(x)
we know that,
a2+b2>2ab
Hence 2ab≤a2+b2
using the above property we can say
2.3.4f(x).g(x)≤16f(x)+0g2(x)...[1]
2.4.10g(x).h(x)≤16h2(x)+100g2(x)...[2]
2.10.3.f(x).h(x)≤100f2(x)+9h2(x)...[3]
Using [1] [2] [3] we can write
U2(x)≤9f2(x)+16g2(x)+100h2(x)+16f2+9g2(x)+16h2(x)+100g2(x)
+100f2(x)+9h2(x)
⇒U2(x)≤125f2(x)+125g2(x)+125h2(x)
⇒U2(x)≤125(f2(x)+g2(x)+h2(x)
Given that f2(x)+g2(x)+h2(x)≤9
∴U2(x)≤125×9
⇒U(x)≤√125×9=√1125
∴ Maximum value oof U(x)=√1125=√N
∴N=1125