wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given f2(x)+g2(x)+h2(x)9 and U(x)=3f(x)+4g(x)+10h(x),where f(x).g(x) and h(x) are continuous xR. If maximum value of U(x) is N. Then find N.

Open in App
Solution

Given : U(x)=3f(x)+4g(x)+10h(x)
Squaring both sides we get
U2(x)=9f2(x)+16g2(x)+100h2(x)+24f(x)g(x)+80g(x)h(x)+60f(x)h(x)
we know that,
a2+b2>2ab
Hence 2aba2+b2
using the above property we can say
2.3.4f(x).g(x)16f(x)+0g2(x)...[1]
2.4.10g(x).h(x)16h2(x)+100g2(x)...[2]
2.10.3.f(x).h(x)100f2(x)+9h2(x)...[3]
Using [1] [2] [3] we can write
U2(x)9f2(x)+16g2(x)+100h2(x)+16f2+9g2(x)+16h2(x)+100g2(x)
+100f2(x)+9h2(x)
U2(x)125f2(x)+125g2(x)+125h2(x)
U2(x)125(f2(x)+g2(x)+h2(x)
Given that f2(x)+g2(x)+h2(x)9
U2(x)125×9
U(x)125×9=1125
Maximum value oof U(x)=1125=N
N=1125

1124957_1031678_ans_65a66c23db4d4a10994c93951292d9c4.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon