cos−1x+cos−1(x2+√3−3x22)=π3
Equate:
x=x2+√3−3x22
2x=x+√3−3x2
x=√3−3x2
squaring both sides:
x2=3−3x2
4x2=3
x2=34
x=±√32
Now putting in original equation, we do not take −√32 since it will not give the desired value:
cos−1(√32)+cos−1(√34+√32(√1−34))
cos−1(√32)+cos−1(√34+√34)
2 cos−1(√32)=2×π6=π3
hence x=√32