Given P= (a,0) and Q= (-a,0) and R is a variable point on one side of the line PQ such that ∠RPQ−∠RQP=2α. the locus of the point R is
We have,
InΔRMP,
tanθ=RMMP=y1a−x1
InΔRQM,
tanϕ=RMQM=y1a+x1
\end{align}$
And also given that,
∠RPQ−∠RQP=2α
θ−ϕ=2α
Taking tan both side and we get,
tan(θ−ϕ)=tan2α
⇒tanθ−tanϕ1+tanθtanϕ=tan2α
⇒tan2α=(y1a−x1)−(y1a+x1)1+(y1a−x1)(y1a+x1)
⇒tan2α=ay1+x1y1−ay1+x1y1(a−x1)(a+x1)(a−x1)(a+x1)+y12(a−x1)(a+x1)
⇒tan2α=2x1y1a2−x12+y12
⇒1cot2α=2x1y1a2−x12+y12
⇒a2−x12+y12=2x1y1cot2α
⇒a2−x12+y12−2x1y1cot2α=0
⇒x12−y12+2x1y1cot2α−a2=0
Hence, the locus of this equation is
x2−y2+2xycot2α−a2=0
x2−y2+2xycot2α=a2
Hence, this si the answer.