Step 1: Find the values of p
Given 2 is root of equation 3x2−p(x+1)=0
Put x=2 in the equation 3x2−p(x+1)=0
⇒p=123=4
Step 2 : Find the value of q.
Given second equation is px2−qx+9=0
⇒4x2−qx+9=0
Comparing 4x2−qx+9=0 with ax2+bx+c=0
a=4,b=−q and c=9.
Since roots are equal, b2−4ac=0
⇒(−q)2−4×4×9=0
⇒q2−144=0
⇒q2=144
⇒q=±12
Hence, p=4 and q=±12.