x−ay−az=0.....(i)bx−y+bz=0....(ii)cx+cy−z=0.....(iii)
Applying cross multiplicatio on (i) and (ii)
x−ab−a=−yb+ab=z−1+abxa+ab=yb+ab=z1−ab=k⇒x=k(a+ab),y=k(b+ac),z=k(1−ab)
substituting x,y and z in (iii)
ck(a+ab)+c(b+ab)−k(1−ab)=0ac+abc+bc+abc−1+ab=0ab+bc+ac+2abc=1
Hence proved.