wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given that for a,b,c,dR, if asec(200o)ctan(200o)=d and bsec(200o)+dtan(200o)=c, then find the value of (a2+b2+c2+d2bdac)sin20o :

Open in App
Solution

Given,

asec(200)ctan(200)=d and bsec(200)+dtan(200)=c

Consider,
asec(200)ctan(200)=d

acos(200)csin(200)cos(200)=d

acos(180+20)csin(180+20)cos(180+20)=d

acos(20)csin(20)cos(20)=d ....... (1)

Consider,
bsec(200)+dtan(200)=c

bcos(200)+dsin(200)cos(200)=c

bcos(180+20)+dsin(180+20)cos(180+20)=c

bcos(20)+dsin(20)cos(20)=c ....... (2)

Let 20 = α

Therefore (1) becomes

acosαcsinαcosα=d

Squaring on both sides

a2cos2α+c2sin2αcos2α+2acosαcsinαcosα=d2

a2+c2sin2α+2acsinα=d2cos2α ...... (3)

Similarly, consider (2).

On squaring both sides and simplifying.

b2+d2sin2α2bdsinα=c2cos2α ....... (4)

Subtracting these two i.e. (3)(4), we get

a2+c2sin2α+2acsinαb2d2sin2α+2bdsinα=d2cos2αc2cos2α

a2+c2(sin2α+cos2α)+2acsinαb2d2(sin2α+cos2α)+2bdsinα=0

a2+c2b2d2+2sinα(ac+bd)=0

(a2+c2)(b2+d2)=2sinα(ac+bd)

(a2+c2)(b2+d2)2(ac+bd)=sinα ........ (5)

To find the value of,

(a2+b2+c2+d2bdac)sin20

Let 20 = α

(a2+b2+c2+d2bdac)sinα

Substitute for sinα from (5)

=(a2+b2+c2+d2bdac)((a2+c2)(b2+d2)2(ac+bd))

=(b2+d2)2(a2+c2)22(b2d2a2c2)

=(b4+d4+2b2d2)(a4+c4+2a2c2)2(b2d2a2c2)

=((b4+d4a4c4)+(2b2d22a2c2)2(b2d2a2c2))

=(b4+d4a4c4)2(b2d2a2c2)+2b2d22a2c22b2d22a2c2

=(b4+d4)(a4+c4)2(b2d2a2c2))+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon