Consider,
bsec(200∘)+dtan(200∘)=c
bcos(200∘)+dsin(200∘)cos(200∘)=c
bcos(180+20)∘+dsin(180+20)∘cos(180+20)∘=c
−bcos(20∘)+dsin(20∘)cos(20∘)=c ....... (2)
Let 20∘ = α
Therefore (1) becomes
−acosα−csinαcosα=d
Squaring on both sides
a2cos2α+c2sin2αcos2α+2acosαcsinαcosα=d2
a2+c2sin2α+2acsinα=d2cos2α ...... (3)
Similarly, consider (2).
On squaring both sides and simplifying.
b2+d2sin2α−2bdsinα=c2cos2α ....... (4)
Subtracting these two i.e. (3)−(4), we get
a2+c2sin2α+2acsinα−b2−d2sin2α+2bdsinα=d2cos2α−c2cos2α
a2+c2(sin2α+cos2α)+2acsinα−b2−d2(sin2α+cos2α)+2bdsinα=0
a2+c2−b2−d2+2sinα(ac+bd)=0
(a2+c2)−(b2+d2)=−2sinα(ac+bd)
(a2+c2)−(b2+d2)−2(ac+bd)=sinα ........ (5)
To find the value of,
(a2+b2+c2+d2bd−ac)sin20∘
Let 20∘ = α
(a2+b2+c2+d2bd−ac)sinα
Substitute for sinα from (5)
=(a2+b2+c2+d2bd−ac)((a2+c2)−(b2+d2)−2(ac+bd))
=(b2+d2)2−(a2+c2)22(b2d2−a2c2)
=(b4+d4+2b2d2)−(a4+c4+2a2c2)2(b2d2−a2c2)
=((b4+d4−a4−c4)+(2b2d2−2a2c2)2(b2d2−a2c2))
=(b4+d4−a4−c4)2(b2d2−a2c2)+2b2d2−2a2c22b2d2−2a2c2
=(b4+d4)−(a4+c4)2(b2d2−a2c2))+1