If X=1+a+a2+....∞, where |a| < 1 and y=1+b+b2+.....∞ where |b| <1,
prove that 1+ab+a2b2+.....∞xyx+y−1
If x = 1 + a + a2 .......... to ∞ (|a|<1), y = 1 + b + b2 ......... to ∞ (|b| < 1), then Z = 1 + ab + a2 b2 + a3 b3..... to ∞ is