The correct option is D z=11−ix+i(11−ix)
Given: z=f(x)+ig(x) where
f,g:(0,1)→(0,1) are real valued functions.
From option (A),
z=11−ix+i(11+ix)
⇒ z=(1+ix)+i(1−ix)(1−ix)(1+ix)=1+ix+i+x1+x2
⇒ z=1+x1+x2+i1+x1+x2
For x=0.5,f(0.5)>1 which is out of range.
Hence, (A) is not correct.
From option (B),
z=11+ix+i(11−ix)=(1−ix)+i(1+ix)(1+ix)(1−ix)
⇒ z=1−x1+x2+i1−x1+x2
f(x) and g(x)ϵ(0,1) if xϵ(0,1).Hence, (B) is correct.
From option (C),
z=11+ix+i(11+ix)=1+i1+ix×1−ix1−ix
⇒ z=1−ix+i+x1+x2=1+x1+x2+i1−x1+x2
For x=0.5,f(0.5)>1 which is out of range.
Hence, (C) is not correct.
From option (D),
z=11−ix+i(11−ix)=1+i1−ix×1+ix1+ix
⇒ z=1+ix+i−x1+x2=1−x1+x2+i1+x1+x2
For x=0.5,g(0.5)>1 which is out of range.
Hence, (D) is not correct.
Hence, answer is options (A),(C),(D)