The correct option is A (x−1)
Given p(x)=x3−3x+2
Let x=1
p(1)=1−3+2=0. So, (x−1) is a factor of p(x)
⇒ x2(x−1)+x(x−1)−2(x−1)
⇒ p(x)=(x2+x−2)(x−1)
⇒ p(x)=(x2+2x−x−2)(x−1)
⇒ p(x)=(x−1)(x−1)(x+2)
And, q(x)=x2−4x+3
⇒ q(x)=x2−3x−x+3
⇒ q(x)=x(x−3)−1(x−3)
⇒ q(x)=(x−3)(x−1)
⇒ q(x)=(x−3)(x−1)
Hence, HCF =(x−1)