How do you find the derivative of y=tan2x?
Solve for differentiation:
Given: dydx=ddx(tan2x)
y=f(g(x))applying chain rule df(g(x))dx=dd(g(x))f(g(x))×ddxg(x)
Here f(g(x))=tan(x)2 and g(x)=tan(x)
ddx(tan(x))2=dd(tan(x))(tan(x))2×ddx(tan(x))
ddx(tan2(x))=2tan(x)×ddx(tanx)dydx=2tan(x)×sec2(x)ddxtanx=sec2xdydx=2sec2xtanx
Hence, the derivative of y=tan2x is dydx=2sec2xtanx.