wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you find the integral of sin3xdx ?


Open in App
Solution

Compute the required integral.

sin3xdx=sinx(1-cos2x)dxsin2x=1-cos2xsin3xdx=sinxdx-sinx.cos2xdx

Now, solve the first integral,

sinxdx=cosx+C

Now, solve the second integral,

let us assume cosx=u

therefore, -sinxdx=du

substitute the value,

-sinx.cos2xdx=u2du-sinx.cos2xdx=u33+C-sinx.cos2xdx=13cos3x+C

Combining all the above,sin3xdx=cosx+13cos3x+C

Hence the required value of sin3xdx is cosx+13cos3x+C


flag
Suggest Corrections
thumbs-up
31
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon