How do you find the integral of ∫sin3xdx ?
Compute the required integral.
∫sin3xdx=∫sinx(1-cos2x)dx∵sin2x=1-cos2x⇒∫sin3xdx=∫sinxdx-∫sinx.cos2xdx
Now, solve the first integral,
∫sinxdx=cosx+ C
Now, solve the second integral,
let us assume cosx=u
therefore, -sinxdx=du
substitute the value,
-∫sinx.cos2xdx=∫u2du⇒-∫sinx.cos2xdx=u33+C⇒-∫sinx.cos2xdx=13cos3x+C
Combining all the above,∫sin3xdx=cosx+13cos3x+C
Hence the required value of ∫sin3xdx is cosx+13cos3x+C