How do you prove sin2x-sin2y=sinx+ysinx-y?
Proof of given relation:
sin2x-sin2y=sinx+ysinx-y
Here we have RHS=sinx+ysinx-y
Therefore,
sinx+ysinx-y=sinxcosy+cosxsinysinxcosy-cosxsiny
[∵sina+b=sinacosb+cosasinb][∵sina-b=sinacosb-cosasinb]
=sin2xcos2y-sinxsinycosxcosy+sinxsinycosxcosy-cos2xsin2y
=sin2xcos2y-cos2xsin2y
=sin2x1-sin2y-1-sin2xsin2y [∵sin2x+cos2x=1]
=sin2x-sin2xsin2y-sin2y+sin2xsin2y
=sin2x-sin2y
=LHS
Hence, sin2x-sin2y=sin(x+y)sin(x-y) is proved.