wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you prove sin2x-sin2y=sinx+ysinx-y?


Open in App
Solution

Proof of given relation:

sin2x-sin2y=sinx+ysinx-y

Here we have RHS=sinx+ysinx-y

Therefore,

sinx+ysinx-y=sinxcosy+cosxsinysinxcosy-cosxsiny

[sina+b=sinacosb+cosasinb][sina-b=sinacosb-cosasinb]

=sin2xcos2y-sinxsinycosxcosy+sinxsinycosxcosy-cos2xsin2y

=sin2xcos2y-cos2xsin2y

=sin2x1-sin2y-1-sin2xsin2y [sin2x+cos2x=1]

=sin2x-sin2xsin2y-sin2y+sin2xsin2y

=sin2x-sin2y

=LHS

Hence, sin2x-sin2y=sin(x+y)sin(x-y) is proved.


flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon