wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you prove sin3θ=3sinθ-4sin3θ?


Open in App
Solution

Proof of given relation:

sin3θ=3sinθ-4sin3θ

Here we have LHS=sin3θ

Therefore,

sin3θ=sinθ+2θ

=sinθcos2θ+cosθsin2θ [sina+b=sinacosb+cosasinb]

=sinθ1-2sin2θ+cosθ2cosθsinθ [sin2θ=2sinθcosθ;cos2θ=1-2sin2θ]

=sinθ-2sin3θ+2sinθcos2θ

=sinθ-2sin3θ+2sinθ1-sin2θ [sin2x+cos2x=1]

=sinθ-2sin3θ+2sinθ-2sin3θ

=3sinθ-4sin3θ

=RHS

Hence, sin3θ=3sinθ-4sin3θ is proved.


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon