How do you prove sin3θ=3sinθ-4sin3θ?
Proof of given relation:
sin3θ=3sinθ-4sin3θ
Here we have LHS=sin3θ
Therefore,
sin3θ=sinθ+2θ
=sinθcos2θ+cosθsin2θ [∵sina+b=sinacosb+cosasinb]
=sinθ1-2sin2θ+cosθ2cosθsinθ [∵sin2θ=2sinθcosθ;cos2θ=1-2sin2θ]
=sinθ-2sin3θ+2sinθcos2θ
=sinθ-2sin3θ+2sinθ1-sin2θ [∵sin2x+cos2x=1]
=sinθ-2sin3θ+2sinθ-2sin3θ
=3sinθ-4sin3θ
=RHS
Hence, sin3θ=3sinθ-4sin3θ is proved.