How do you simplify cos(x+π)?
Solve for the required value
We can evaluatecos(π+x) using the trigonometric identity
cos(A+B)=cos(A)⋅cos(B)−sin(A)⋅sin(B)
So we get,
cos(π+x)=cosπcosx–sinπsinx
We know that cosπ=-1 and sinπ=0
Therefore
cos(π+x)=(-1)cosx–0sinx⇒cos(π+x)=-cosx+0⇒cos(π+x)=–cosx,
Hence, the required answer is cos(π+x)=–cosx