1+2i2−3i=−4+7i13=−413+713i
Explantion:
1. Find the complex conjugate of denominator
denominator: z=2−3i
denominator complex coniugate ¯¯¯z=2+3i
1. Multiply both nemerator and denominator for the complex coniugate
1+2i2−3i×2+3i2+3i=2+3i+4i+6i222−(3i)2=
Rememberig that i2=−1
=2+6×(−1)+7i4−9i2=2−6+7i4−9×(−1)=−4+7i4+9=
=−4+7i13=−413+713i