How do you solve sinx+cosx=1?
Find the general solution of given trigonometric equation
Given: sinx+cosx=1
Squaring on both sides we get,
⇒ sinx+cosx=1
⇒ 12sinx+12cosx=12
⇒ sinπ4sinx+cosxcosπ4=12
⇒ cos(x-π4)=12
⇒ x-π4=2nπ±π4
⇒ x-π4=2nπ-π4⇒x=2nπ(taking+sign)
⇒ x-π4=2nπ+π4⇒x=2nπ+π2(taking-sign)
⇒ x=π2+2πn,2πn { n is any integer}
Hence the answer is x=π2+2πn,2πn { n is any integer}
How do you solve 2x=64?
How do you solve log1x=7.761?
How do you solve logx=-2?
How do you solve log(x)=-0.123?