How to integrate e2x?
Integrate the given expression :
Given, I=∫e2xdx
We will use the method of substitution to solve the integration.
Let 2x=z
⇒2dx=dz⇒dx=12dz
Therefore,
I=∫e2xdx=∫12ezdz=12ez+c[∵∫eudu=eu+c]=12e2x+c[∵z=2x]
Hence, the value of integration of ∫e2xdx is 12e2x+c.