Let f(x)=(ax+b)m(cx+d)rn
By Leibnitz product rule,
f′(x)=(ax+b)nddx(cx+d)π(cx+d)mddx(ax+b)m ...(I)
Now, let F1(fx)=(cx+d)m
f1(x)=limh→0f1(x+h)−f1(x)h
=limh→0(cx+ch+d)m−(cx+d)mh
=(cx+d)mlimh→01h[(1+chcx+d)m−1]
(cx+dm)limh→01h[(1+mch(cx+d)+m(m−1)2(c2h2)(cx+d)2+…)−1]
=(cx+d)mlimh→0[mch(cx+d)+m(m−1)d2h22(cx+d)+m(m−1)c2h2(cx+d)2+…]
=(cx+d)m[mccx+d+0]
=mc(cx+d)m(cx+d)
=mc(cx+d)m−1
ddx(cx+d)m=mc(cx+d)m−1 ...(2)
Similarly, ddx(ax+b)n=na(ax+b)n−1 ....(3)
Therefore, from (1), (2), and (3), we obtain
f′(x)=(ax+b)n{mc(cx+d)n−1}+(cx+d)m{na(ax+b)n−1}
=(axb)n−1(cx+d)m−1[mc(ax+b)+na(cx+d)]