The correct option is B x≥y
I. 10x2 + 33x + 27 = 0
x1=−33+√b2−4ac2a=−33+√1089−4×10×2720x2=−33−√b2−4ac2ax2=−33−√1089−108020x1=−33+320, x2=−33−320x1=−3020, x2=−3620=−95, x=−32, −95
II. 5y2 + 19 y + 18 = 0
y1=−19+√361−4×18×510y2=−19−√361−36010y1=−19+110=−1810=−95y2=−19−110=−2010=−2y=−95,−2 ⇒x≥y