wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) f(x) = (x-1) (x-2)2

(ii) f(x) = x1-x , x<1

(iii) f(x) = -(x-1)3 (x+1)2

Open in App
Solution

iGiven: fx=x-1x-22=x-1x2-4x+4=x3-4x2+4x-x2+4x-4=x3-5x2+8x-4f'x= 3x2-10x+8For the local maxima or minima, we must have f'x=0 3x2-10x+8=03x2-6x-4x+8=0x-23x-4=0x=2 and43Thus, x=2 and x=43 are the possible points of local maxima or local minima.Now, f''x = 6x-10At x=2: f''2 = 62-10=2>0So, x=2 is the point of local minimum.The local minimum value is given byf2 = 2-12-22=0At x=43: f''43 = 643-10=-2<0So, x=4 3is the point of local maximum.The local maximum value is given byf4 3 =4 3-14 3-22=13×49=427


iiGiven: fx = x1-xf'x = 1-x-x21-xFor the local maxima or minima, we must have f'x=01-x-x21-x=01-x=x21-x2-2x=x3x=2 x=23 Thus, x=23 is the possible point of local maxima or local minima.Now, f''x =-11-x -121-x+x21-x1-x=-11-x -122-x1-x1-xAt x=23: f''23 = -11-23 -122-231-231-23 =-3-4313×3=-3-43<0So, x=23 is the point of local maximum.The local maximum value is given byf23 = 231-23 =233


iiiGiven: fx =-x-13x+12f'x =- 3x-12x+12+2x+1x-13For the local maxima or minima, we must have f'x=0 -3x-12x+12-2x+1x-13=0x-12x+1-3x+1-2x-1=0x-12x+1-3x-3-2x+2=0x-12x+1-5x-1=0x=1, -1 and -15Thus, x=1, x=-1 and x=-15 are the possible points of local maxima or local minima.Now, f''x = - 32x-1x+12+2x+1x-12+2x-13+3x-12x+1 = -6x-1x+12+6x+1x-12-2x-13-6x-12x+1At x=1: f''1 =-61-11+12+61+11-12-21-13-61-121+1=0So, it is a point of inflexion.At x=-1: f''-1 =-6-1-1-1+12+6-1+1-1-12-2-1-13-6-1-12-1+1=16>0So, x=-1 is the point of local minimum.The local minimum value is given by f-1 =-1-13-1+12=0At x=-15: f''-15 =-6-15-1-15+12+6-15+1-15-12+2-15-13-6-15-12-15+1=576125+384125-432125-864125=-336125<0So, x=-15 is the point of local maximum.The local maximum value is given by f-15 =--15-13-15+12=--2161251625=34653125

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon