(i) If f(x)={x−|x|xif x≠02if x=0, show that limx→ 0 f(x) does not exist.
(ii) Evaluate limx→ 0 sin x−2 xin 3x+sin 5xx.
Or
(i) Find the derivative of (x−1)(x−2)(x−3)(x−4).
(ii) Differentiate xex by using first principle.
(i) Given, f(x)={x−|x|xif x≠02if x=0
Now, limite of f(x) at x = 0,
LHL=limx→0 f(x)=limx→0 x−|x|x
= limh→0 (0−h)−|0−h|0−h
[put x=0−h as x→ 0, then h→ 0]
= limx→0 −h−h−h=limx→0 2hh=2
RHL=limx→0, f(x)
= limx→0, x−|x|x
= limh→0 (0+h)−|0+h|0+h
[put x=0+h as x→ 0, then h→ 0]
= limh→0 h−hh=0
∵ LHL≠RHL
Hence, limx→0 f(x) does not exist.
(ii) We have, limx→0 sin x−2sin 3x+sin 5xx
= limx→0 (sin x+sin 5x)−2sin 3xx
= limx→0 2sin(x+5x2)cos(x−5x2)−2sin 3xx
[∵ sin A+sin B=2sin(A+B2)cos(A−B2)]
= limx→0 2sin 3x cos 2x−2 sin 3xx
= limx→0 2 sin 3x (cos 2x−1)x
= limx→0 2 sin 3x3x×3×limx→0 (cos 2x−1)
= 2×3×(1−1) [∵ limh→0sin hh=1]
= 6×0=0
Or
(i) Let y=(x−1)(x−2)(x−3)(x−4)
= x2−3x+2x2−7x+12
On differentiating both sides w.r.t.x, we get
dydx=[(x2−7x+12)ddx(x2−3x+2)−(x2−3x+2)ddx(x2−7x+12)](x2−7x+12)2
[using quotient rule of derivative]
∴ dydx=[(x2−7x+12)(2x−3)−(x2−3x+2)(2x−7)](x2−7x+12)2
= [2x(x2−7x+12)−3(x2−7x+12)−2x(x2−3x+2)+7(x2−3x+2)](x2−7x+12)2
= [2x3−14x2+24x−3x2+21x−36−2x3+6x2−4x+7x2−21x+14](x2−7x+12)2
= [−14x2−3x2+6x2+7x2+24x+21x−4x−21x−36+14](x2−7x+12)2
= −4x2+20x−22(x2−7x+12)2
(ii) Let f(x)=xex.
Then, f(x+h)=(x+h)ex+h
∴ ddx[f(x)]=limh→0 f(x+h)−f(x)h
= limh→0 (x+h)ex+h−xexh
= limh→0 (xx+h−xex)+hex+hh
= limh→0 [xe x(eh−1)h]+limh→0 ex+h
= xex limh→0(eh−1h)+limh→0 ex+h
= xex×1+ex+0 [∵ limh→0 eh−1h=1]
= xex+.ex=ex(x+1)