wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) If f(x)={x|x|xif x02if x=0, show that limx 0 f(x) does not exist.

(ii) Evaluate limx 0 sin x2 xin 3x+sin 5xx.

Or

(i) Find the derivative of (x1)(x2)(x3)(x4).

(ii) Differentiate xex by using first principle.

Open in App
Solution

(i) Given, f(x)={x|x|xif x02if x=0

Now, limite of f(x) at x = 0,

LHL=limx0 f(x)=limx0 x|x|x

= limh0 (0h)|0h|0h

[put x=0h as x 0, then h 0]

= limx0 hhh=limx0 2hh=2

RHL=limx0, f(x)

= limx0, x|x|x

= limh0 (0+h)|0+h|0+h

[put x=0+h as x 0, then h 0]

= limh0 hhh=0

LHLRHL

Hence, limx0 f(x) does not exist.

(ii) We have, limx0 sin x2sin 3x+sin 5xx

= limx0 (sin x+sin 5x)2sin 3xx

= limx0 2sin(x+5x2)cos(x5x2)2sin 3xx

[ sin A+sin B=2sin(A+B2)cos(AB2)]

= limx0 2sin 3x cos 2x2 sin 3xx

= limx0 2 sin 3x (cos 2x1)x

= limx0 2 sin 3x3x×3×limx0 (cos 2x1)

= 2×3×(11) [ limh0sin hh=1]

= 6×0=0

Or

(i) Let y=(x1)(x2)(x3)(x4)

= x23x+2x27x+12

On differentiating both sides w.r.t.x, we get

dydx=[(x27x+12)ddx(x23x+2)(x23x+2)ddx(x27x+12)](x27x+12)2

[using quotient rule of derivative]

dydx=[(x27x+12)(2x3)(x23x+2)(2x7)](x27x+12)2

= [2x(x27x+12)3(x27x+12)2x(x23x+2)+7(x23x+2)](x27x+12)2

= [2x314x2+24x3x2+21x362x3+6x24x+7x221x+14](x27x+12)2

= [14x23x2+6x2+7x2+24x+21x4x21x36+14](x27x+12)2

= 4x2+20x22(x27x+12)2

(ii) Let f(x)=xex.

Then, f(x+h)=(x+h)ex+h

ddx[f(x)]=limh0 f(x+h)f(x)h

= limh0 (x+h)ex+hxexh

= limh0 (xx+hxex)+hex+hh

= limh0 [xe x(eh1)h]+limh0 ex+h

= xex limh0(eh1h)+limh0 ex+h

= xex×1+ex+0 [ limh0 eh1h=1]

= xex+.ex=ex(x+1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon