(i) Since m+rP2=90
∴(m+r)(m+r−1)=90
⇔(m+r)2−(m+r)−90=0
∴m+r=10 and m+r=−9
Hence m+r=10,m+r≠−9....(1)
m−rP2=30
∴(m−r)(m−r−1)=30
∴(m−r)2−(m−r)−30=0
⇔m−r=6,m−r=−5....(2)
Solving (1) and (2), we get m=8 & r=2
Hence, (m,r)=(8,2)
(ii) Given nPr=nPr+1
⇔n!(n−r)!=n!(n−r−1)!
⇔(n−r)!=(n−r−1)!
⇔(n−r)(n−r−1)!−(n−r−1)!=0
⇔(n−r−1)!(n−r−1)=0
(n−r−1)!≠0∴n−r−1=0
n−r=1...(1)
and given nCr= nCr−1{∵nCA= nCB⇒n=A+B or A=B}
n=r+(r−1)
n−2r=−1...(2)
Solving (1) and (2), we get
r=2 and n=3
∴m+n−r=9